MECHANICS OF MATERIALS AND STRUCTURAL INTEGRITY

Teachers: 
Credits: 
6
Year of erogation: 
2021/2022
Unit Coordinator: 
Disciplinary Sector: 
Mechanical Design and Machine Building
Semester: 
Second semester
Year of study: 
2
Language of instruction: 

Italian

Learning outcomes of the course unit

Knowledge and understanding
The advanced mechanical design requires knowledge and understanding of the problems of deformation and strength of materials that go beyond the notion of isotropic linear elasticity, static and fatigue strength simply based on knowledge of the elastic stress state, which is the traditional mechanical design approach. And this also because the CAE (Computer Aided Engineering) softwares incorporate, in an increasing number of cases, the structural finite element simulation also in the non-linear field, making it available at reasonable prices but also requiring material behavior skills over the traditional ones in order to exploit them correctly.
The student, therefore, at the end of the course will know the types of mechanical behavior and failure of materials and the related mathematical models for the design / verification of components and mechanical systems beyond the simple linear elastic behavior, i.e. based on the elastic stress state. He will also know the methods of experimental characterization and simulation of non-linear mechanical behavior by the finite element method.

Applying knowledge and understanding
The student will be able to identify the most appropriate mathematical model to approximate the stress-strain relationship of the material and the mechanical strength under service conditions. He can then resolve analytically and / or by finite element simulation problems of deformation and strength of mechanical components and systems beyond simple linear elastic evaluation.

Prerequisites

The knowledge of the finite element method is useful, though not mandatory.

Course contents summary

The course is about the two fundamental aspects of the mechanical behavior of materials: i) the stress-strain behavior (mechanics of materials), ii) the failure mechanism and therefore the strength of the material (structural integrity). Each of these aspects will be illustrated from the phenomenological point of view (experimental) and the mathematical description (modeling).
As for the stress-strain relationship, the following behaviors will be presented:
- quasi-static elasto-plasticity
- cyclic elasto-plasticity
- anisotropic elasticity (composite materials)
- hyperelasticity (elastomeric materials)
- Creep (metallic materials) and viscoelasticity (polymeric materials)
Regarding failure mechanisms and strength, the following cases will be illustrated:
- mechanisms and failure criteria for composite materials
- fatigue strength by deformation approach
- brittle fracture; effect of plasticity in the case of ductile materials
- fatigue crack growth and fatigue life prediction
For each of the above topics lectures as well as classroom exercises will be given. In addition, simple applications of the finite element method with the software Abaqus (student edition) will be done in the lab.

Course contents

mechanical behavior of materials, methods and models;
- fatigue in metallic materials, microstructural aspects;
- low-cycle fatigue (LCF) and design;
- fracture mechanics, LEFM and small scale yielding FM, notes to EPFM and FAD diagrams;
- fatigue crack grow resistance, crack closure effects;
- notes of fractography and failure analysis;
- ductile damage models and FEM modeling;
- hyperelasticity and material models;
- composite materials and fracture criteria;
- NDT and NDE methods

Recommended readings

N.E. DOWLING: "Mechanical behaviour of materials", 4th Ed., Prentice-
Hall, 2012.
Teacher notes concerning the composite materials topic.

Teaching methods

Lectures and exercises. Lectures are given with the support of PowerPoint slides. The exercises consist in solving examples on the topics covered in class. Laboratory application of the finite element method to problems of mechanical behavior of materials using Abaqus (student edition)

Assessment methods and criteria

The exam consists of a written test and the oral presentation and discussion of problems of mechanical behavior assigned at the beginning of the course, solved by finite element simulation with Abaqus software (student edition). The written exam is composed of three questions, consisting in open-ended questions or exercises on the topics of the course. The maximum score is 30/30. The oral discussion of the problems assigned at the beginning of the course allows an increase in the score of the written part up to three points, according to the methodological appropriateness, originality, content, and clarity of exposition.

Other informations

Class and FEM exercises are strongly suggested.