TECNOLOGIE DI PRODUZIONE NON CONVENZIONALE

Crediti: 
6
Settore scientifico disciplinare: 
TECNOLOGIE E SISTEMI DI LAVORAZIONE (ING-IND/16)
Anno accademico di offerta: 
2017/2018
Semestre dell'insegnamento: 
Secondo Semestre
Lingua di insegnamento: 

Italiano

Obiettivi formativi

Al termine del corso lo studente dovrebbe aver acquisito conoscenze e competenze relative ai processi tecnologici non-convenzionali, quali le lavorazioni laser, le fabbricazioni additive, le lavorazioni ad ultrasuoni, il taglio a getto d’acqua, il taglio idroabrasivo, l’elettroerosione e le lavorazioni elettrochimiche. Lo studio sarà svolto secondo un approccio sistematico che si basa sulla modellazione di tali processi, al fine di permettere l’interpretazione e la comprensione delle leggi e dei meccanismi su cui si fondano. Per ogni lavorazione verranno analizzati i vantaggi ed i limiti rispetto alle lavorazioni tradizionali per asportazione di truciolo e le potenzialità nella produzione di componenti specifici. La modellazione dei processi sarà orientata all’analisi ed alla previsione dell’influenza dei parametri di processo sui risultati ottenuti.

Prerequisiti

Disegno Tecnico Industriale, Fisica, Chimica, Scienza e Tecnologia dei Materiali, Analisi matematica, Tecnologia Meccanica

Contenuti dell'insegnamento

Lo studio delle tecnologie di produzione non-convenzionali, quali:

- Lavorazioni laser
- Fabbricazione additiva
- Lavorazioni ad ultrasuoni 
- Taglio a getto d’acqua
- Taglio idroabrasivo
- Elettroerosione
- Lavorazioni elettrochimiche

Programma esteso

Introduzione alle lavorazioni non convenzionali: definizione, classificazione, esempi di utilizzo. 

Lavorazioni laser (Laser Materials Processing – LMP). La natura duale della luce: onda elettromagnetica (lunghezza d’onda, numero d'onda) e flusso di fotoni. Emissione attraverso la densità di energia di un corpo nero. Nozioni di meccanica quantistica alla base del funzionamento di un laser. Assorbimento, emissione spontanea ed emissione stimolata.

L'inversione di popolazione. Effetto laser nei materiali a 2, 3 e 4 livelli energetici. Risonanza ottica ed amplificazione ottica. Modi longitudinali e lunghezza della cavità ottica. Proprietà del fascio laser: monocromaticità, coerenza (spaziale e temporale), divergenza e brillanza. L’efficienza di un laser ed i suoi componenti.

Profilo spaziale di un fascio laser e definizione del suo diametro. Modi elettromagnetici trasversali (TEM) e fattore di qualità del fascio. Polarizzazione della luce (lineare, circolare, casuale). Profilo temporale di un fascio laser: onda continua e regime impulsato. Tecniche di generazione degli impulsi in funzione della loro durata. 

Architettura delle più comuni sorgenti laser per impiego industriale allo stato solido e gassoso. Materiali attivi: anidride carbonica, neon, ioni di neodimio, ioni di tulio, giunzioni p-n (semiconduttore). I moderni laser in fibra. 

Le leggi di Snell. Le leggi di Fresnel e le differenze nell'assorbimento di onde di tipo "p" o "s". Interazione laser materia: differenze tra materiali metallici e non metallici. Riflettività/assorbimento delle superfici, e dipendenza di detti parametri da lunghezza d'onda, temperatura, rugosità superficiale, presenza di ossidi ecc. Propagazione ed assorbimento ottico all’interno di un materiale secondo la legge di Beer-Lambert. Effetti termici sul materiale e transizioni di stato in condizioni di equilibrio. Classificazione delle principali lavorazioni in funzione dei parametri di processo.

Sistemi di trasporto della radiazione: specchi e fibra ottica. Funzionamento della fibra ottica ed il concetto del Total Internal Reflection. Sistemi di focalizzazione del fascio: iperboloide di rotazione, profondità di campo e distanza di Rayleigh. Rifocalizzazione dopo fibra ottica. Sistemi di movimentazione del fascio: testa galvanometrica, lente f-theta, assi lineari e robot antropomorfi.

Tempra laser (Laser Hardening): risoluzione dell'equazione di Fourier in condizioni non stazionarie. Ciclo termico: fusione superficiale, tempra e rinvenimento. Fattibilità del processo in funzione di tipologia di componente e volume di produzione. Applicazioni industriali e macchine per la tempra laser.

Soluzione dell'equazione di flusso lineare per solido di spessore semi-infinito riscaldato attraverso una sorgente termica estesa. Fasi di accensione e spegnimento della sorgente e loro effetti sul materiale. Tempra laser di grandi superfici e di componenti assialsimmetrici. Simulazione numerica di casi generali.

Taglio laser (Laser Cutting): principio di funzionamento del gas di assistenza (inerte e riattivo). Influenza dei parametri di processo (potenza, velocità di taglio, diametro del fascio focalizzato, tipo e pressione del gas di assistenza) sulla profondità e sulla qualità di taglio. Modellazione del processo di taglio: sorgente termica piana in movimento. Stima dell'inclinazione del fronte di taglio e del massimo spessore tagliabile.

Saldatura laser (Laser Welding) in diverse configurazioni geometriche (sovrapposizione, d'angolo, di testa): influenza dei parametri di processo nella transizione tra saldatura per conduzione e saldatura a keyhole. Instabilità del keyhole. Modellazione del processo di saldatura: sorgenti termiche lineari e puntiformi in movimento. Saldatura di materiali sottili in regime impulsato.

Lavorazioni laser in regime impulsato (Laser Ablation, Surface Modification). Interazioni laser materia in funzione di durata e fluenza dell’impulso: tempo di rilassam

Bibliografia

S. Kalpakjian, S. Schmid, Manufacturing engineering and technology, 2013

M. Monno, B. Previtali, M. Strano, Tecnologia meccanica le lavorazioni non convenzionali, 2012

E. Capello, Le lavorazioni industriali mediante laser di potenza, 2009

Metodi didattici

Le lezioni comprenderanno sia la trattazione teorica delle diverse tecnologie non convenzionali che l’analisi di casi reali in cui tali tecnologie sono state introdotte con successo in ambienti produttivi. Le slide utilizzate a supporto delle lezioni verranno caricate con cadenza settimanale sulla piattaforma Elly. Per scaricare le slide è necessaria l’iscrizione al corso on line. Saranno svolte inoltre delle esercitazioni pratiche su alcune tecnologie in modo da garantire una più profonda comprensione dei fenomeni fisici trattati durante le lezioni. La preparazione di un progetto relativo ad una specifica tecnologia non-convenzionale, costituirà una parte fondamentale del percorso di apprendimento e verrà discussa in fase di esame.

Modalità verifica apprendimento

La valutazione sommativa degli apprendimenti prevede due componenti:

1) Una relazione riguardante un progetto inerente ad una specifica tecnologia non-convenzionale. La relazione è valutata con scala 0-30 (peso 50% del voto complessivo);

2) Una prova orale consistente nella discussione di domande su due tra tutte le tecnologie non-convenzionali trattate. La prova orale è valutata con scala 0-30 (peso 50% del voto complessivo).

Si ricorda che l’iscrizione on line all’appello è obbligatoria per la prova orale. I risultati dell’esame sono pubblicati sul portale Esse3 entro una settimana dalla data dell’esame.